If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16m^2-64m=0
a = 16; b = -64; c = 0;
Δ = b2-4ac
Δ = -642-4·16·0
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-64}{2*16}=\frac{0}{32} =0 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+64}{2*16}=\frac{128}{32} =4 $
| (x-11)(x-7)=-4 | | 16m²-64m=0 | | 3(a-2)-a=a+7 | | x²-20x+5=0 | | 85+2x-x+10=180 | | 85+2x-x+10=360 | | 10x-1+10x+7+9x+6=180 | | 43+x-1+x=180 | | x-1+x+43=360 | | 16+2t=t+9+4 | | x+77=85 | | 2x+6+3x-2+4x-4=180 | | 16t^2-70+49=0 | | 2x+6+3x-2+4x-4=360 | | 49x^2+1=25 | | 2(x-4)^2=12 | | (x^2)+(1.8x)^2=729 | | -6+(x+4)^2=0 | | ((+1.8x)^2)*x^2=729 | | 24/32=x/44 | | 2x²-20x+21=0 | | 16^2-28a+21=0 | | (1.8x)^2=729/(x^2) | | x4+4=(x2−2x+2)(x2+2x+2) | | X=7x-15 | | 6x+5-6=2(x+3) | | 4^x+3=32^2x | | 20=5w+2/2+w+6/3 | | 24=x-13 | | 4x2-19x-5=0 | | (2x-3)^2-24=0 | | 2^(2x+1)+2=0.01 |